Code transcripts
Session 1
11+1
2
3k = ZZ/11
4k = QQ
51/2
6k = RR
7
8k = QQ
9R = k[x,y,z,w]
10
11x + y^2 - w*x
12
13I = ideal(x^2, y^2, z^2)
14J = ideal(x*y*z)
15
16I + J
17intersect(I,J)
18
19R/I -- Ring of polynomials with x,y,z degree <= 1, w degree anything
20
21use (R/I) -- Ties variables to the ring R/I instead of R
22x^3
23
24k
25k = ideal(x+y+z)
26k
27k = symbol k -- To "deassign" a variable
28
29-- indexed variables
30x = symbol x
31R = QQ[x_0,x_1,x_2,x_3]
32R = QQ[x_0..x_3]
33vars R
34
35x_0
36
37R = symbol R
38R = ring x_0
39
40-- order matters
41restart
42R = QQ[x,y,z]
43I = ideal(x+y)
44S = QQ[x,y]
45J = ideal(x+y)
46
47J == I -- is I and J equal?
48sub(J, R) == I
49
50use R
51K = ideal(x+y+z)
52sub(K, S) -- sub is a bit dangerous
53
54use R
55phi = map(R, S, {x,y})
56phi J -- equivalent to sub(J,R) in this case
57
58describe S
59use S
60psi = map(S,R,{x,y,0})
61psi K -- equivalent to sub(K,S) in this case
62
63restart
64R = QQ[x,y,a, MonomialOrder => Lex, Degrees => {{-1,2}, {2,3}, {4,5}}]
65x > y
66a > y
67
68x > a^102832
69
703:1
71degree(x^2*y^3)
72degree(x)
73
74describe R
75
76
77-- finding things
78viewHelp
79viewHelp inverse
80?inverse
81apropos "inverse"
82viewHelp ideal
83
84--
85-- lists
86l = { "abc", I, R }
87l#0
88l#1
89l#2
90
91l | { hello, "hello" }
92
93s = ("abc", I, R)
94a..t
95(0,0)..(6,4) -- sequence
96toList((0,0)..(6,4)) --list
97
98(0,0)..<(6,4) -- sequence
990..<7
1000..(7-1)
101
102s = a..c
103
104x = symbol x
105s = x_(0,0)..x_(3,3)
106
107reverse(0..10)
108reverse(a..z)
109
110R = QQ[s]
111describe R
Session 2
1-- Best practices
2restart
3
4f = i -> i+1
5
6f 7
7f(5)
8
9g = (a,b,c) -> (a+2, b+3, c+7)
10g(1,7,-3)
11
12R = QQ[x,y]
13J = 17
14
15complicated = I -> (
16 J := radical I; -- J is local to the function scope, :=
17 if J == ideal(x,y) then return ideal(0_R);
18 return (J + ideal(x,y))
19)
20
21complicated(ideal(x^2+7))
22complicated(ideal(x,y))
23
24I = ideal(x,y)
25if I == ideal(x,y) then (
26 print("Hello!");
27 I
28)
29
30for i from 0 to 7 do ( print(i) )
31for i from 0 to 7 list ( i^2 )
32
33-- Don't
34l = {}
35for i from 0 to 7 do (
36 l = l | {i^2}
37)
38l
39---
40
41-- kind of OK, but
42for word in {"my", "name", "is"} do print word
43
44viewHelp apply
45apply(toList(0..7), i -> i^2)
46toList(0..7) / (i -> i^2) -- same as above
47
48R = QQ[x,y,z,w]
49I = ideal(x^2+y, y^2-x*z, w*x)
50prim_dec = primaryDecomposition I
51prim_dec / dim
52
53primaryDecomposition I / radical // unique -- equivalent to
54unique(apply(primaryDecomposition I, radical))
55
56unique({1,2,3,2,2})
57S = QQ[ subsets(4,2) / (i -> p_i) ]
58describe S
59
60gens gb I
61
62viewHelp forceGB
63
64viewHelp
65
66R = QQ[x,y, MonomialOrder => ]
67
68matrix{{1,2}}
69
70load "my_functions.m2"
71f(1)
72g(4)
BestPackage
1newPackage(
2 "BestPackage",
3 Headline => "an amazing package",
4 Version => "1.0"
5)
6
7export {"bestMethod"}
8
9bestMethod = method()
10bestMethod ZZ := String => i -> if i == 0 then "hello" else "bye"
11
12TEST ///
13assert(bestMethod(0) == "hello")
14///
15
16beginDocumentation()
17
18doc ///
19Key
20 BestPackage
21Headline
22 a great package
23///
24
25
26doc ///
27Key
28 bestMethod
29 (bestMethod, ZZ)
30Headline
31 a great method, for integers
32Usage
33 greeting = bestMethod(i)
34Inputs
35 i:ZZ
36 either 1 or something else
37Outputs
38 greeting:String
39 a nice greeting
40Description
41 Text
42 This method outputs a nice greeting based on input. The integer 0 gives a hello
43 Example
44 bestMethod(0)
45 Text
46 Any other input says goodbye
47 Example
48 bestMethod(123)
49///
50
51end
52
53
54restart
55uninstallPackage "BestPackage"
56installPackage "BestPackage"
57viewHelp BestPackage
58
59needsPackage "BestPackage" -- load package
60check BestPackage -- run all tests
61
62bestMethod(1)
63bestMethod(0)
64
65viewHelp BestPackage
66
67-- for inspiration for package documentation
68needsPackage "SimpleDoc"
69viewHelp SimpleDoc
70
71
72
73
74needsPackage "Graphs"
75viewHelp Graphs
76
77R = QQ[x,y,z]
78I = ideal(x^2)
79amult I
80
81needsPackage "SimpleDoc"
82viewHelp SimpleDoc
83
84
85-- HashTable
86ht = hashTable { h => "Hello", b => "Bye" }
87
88h
89b
90ht.h
91ht.b
92ht.akjhsdas
93
94ht
95
96ancestors class I
97peek I
98I.ring
99peek I.cache
100
101f = i -> i+1
102f(7)
103f(7/2)
104f(I)
105
106g = method()
107g(7)
108
109g ZZ := ZZ => i -> i^2 -- <method name> <input type> := <output type> => i -> i^2
110g QQ := QQ => i -> i^2 -- <method name> <input type> := <output type> => i -> i^2
111g(7)
112g(1/2)
113g(I)
114
115g (QQ, QQ) := QQ => (i,j) -> i^2 + j^2 -- <method name> <input type> := <output type> => i -> i^2
116g(1/2, 3/4)
117
118
119h = method(Options => { Shift => 0 })
120h ZZ := ZZ => opts -> i -> i + 1 + opts.Shift
121
122h(7)
123h(7, Shift => 27)
124
125viewHelp newRing
126options newRing
127options h
Session 4
1restart
2
3ht = hashTable { 7 => "hello", b => "goodbye", QQ => "rational"}
4
5ht.b
6ht#b
7ht#7
8ht#QQ
9
10b = 123
11ht#b
12ht.b
13
14
15class QQ
16class {1,2,3}
17
18ancestors class {1,2,3}
19ancestors class (1,2,3)
20
21g = method()
22g Thing := i -> i + 1
23
24ancestors Ideal
25
26g(7)
27g(ideal 1)
28
29-------------
30
31-- trigger an error
32error "error is here"
33
34R = QQ[x,y]
35ideal(x)
36oo + ideal(y)
37ooo + ideal(y^2)
38oooo + ideal(y^3)
39
40viewHelp "gbTrace"
41gbTrace = 3
42
43R = QQ[x,y,z, MonomialOrder => Lex]
44I = ideal(x^9 + y^3 + z^2 - 1, x^7 + y^5 + z^3 - 1)
45gens gb I -- Ctrl + C to interrups
46
47R = QQ[x,y,z, MonomialOrder => Lex]
48ideal(x^3 + y^3 + z^2 - 1, x^7 + y^5 + z^3 - 1)
49gbTrace = 0
50elapsedTime gens gb I;
51
52
53oo
54o84
55o87
56
57gens R
58R_0
59R_1
60
610_R
621_R
63
64map(R^1,R^1,1)
65methods map
66viewHelp map
67
68x = symbol x;
69R = QQ[x_1,x_2]
70x_1
71
72f = n -> (
73 x := symbol x;
74 R := QQ[x_1..x_n];
75 ideal gens R
76)
77
78x_1
79f 3
80x_1
81
82restart
83R = QQ[x,y]
84x
85
86f = () -> QQ[x,y]; -- bad, this "uses" the newly created ring,
87 -- messing up user variables
88
89f = () -> QQ( monoid [x,y]); -- fix, doesn't use the new ring
90
91f()
92
93x
94use R
95x