Problem 5
The symmetric group \(S_5\) has an irreducible representation of dimension 6. Construct explicit \(6 \times 6\)-matrices such that the matrix group they generate in \({\rm GL}(6,\mathbb{C})\) is isomorphic to that representation.
Solution
GAP
g:=SymmetricGroup(5);
r:=IrreducibleRepresentations(g);
GAP returns a list of all 7 irreducible representations of \(S_5\); the 6-dimensional one looks as follows:
GroupHomomorphismByImages( SymmetricGroup( [ 1 .. 5 ] ), Group(
[ [ [ 0, 0, 0, 0, -1, 0 ], [ 0, 0, 1, 1, 1, 0 ], [ 0, 0, 0, 0, 0, 1 ],
[ 0, 0, -1, 0, 0, 0 ], [ -1, 0, 1, 0, 0, -1 ],
[ 0, -1, 0, 0, 1, 1 ] ],
[ [ 0, -1, 0, 0, 0, 0 ], [ -1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, -1, 0 ],
[ 0, 0, 0, -1, 0, 0 ], [ 0, 0, -1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1 ]
] ]), [ (1,2,3,4,5), (1,2) ],
[ [ [ 0, 0, 0, 0, -1, 0 ], [ 0, 0, 1, 1, 1, 0 ], [ 0, 0, 0, 0, 0, 1 ],
[ 0, 0, -1, 0, 0, 0 ], [ -1, 0, 1, 0, 0, -1 ],
[ 0, -1, 0, 0, 1, 1 ] ],
[ [ 0, -1, 0, 0, 0, 0 ], [ -1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, -1, 0 ],
[ 0, 0, 0, -1, 0, 0 ], [ 0, 0, -1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1 ]
] ] )
So the wanted matrices are
\[\begin{split}\begin{pmatrix}
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 & -1 \\
0 & -1 & 0 & 0 & 1 & 1
\end{pmatrix}\end{split}\]
and
\[\begin{split}\begin{pmatrix}
0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}\end{split}\]