# Sampling from the Blow up MeasureΒΆ

This page contains the code for the experiments in Table 3 for the Blow up measure

```
// We list all the partitions of 6 and the corresponding lines-counts.
partitionCounts := [[[6], [0] ],
[[5,1], [2] ],
[[4, 2 ], [1] ],
[[4, 1, 1], [5] ],
[[3, 3], [0] ],
[[3, 2, 1], [3] ],
[[3, 1, 1, 1], [9] ],
[[2, 2, 2], [3] ],
[[2, 2, 1, 1], [7] ],
[[2, 1, 1, 1, 1], [15] ],
[[1, 1, 1, 1, 1, 1], [27]]];
// The function randomPolynomial(p,N) which gives a random polynomial of degree 6.
function randomPolynomial(p,N)
K := pAdicField(p,300);
_<x> := PolynomialRing(K);
listCoef := [0..p^(N+1)-1];
randomPoly:= 0*x;
for i in [0..6] do
coef := Random(listCoef);
randomPoly := randomPoly + coef * x^i;
end for;
return randomPoly;
end function;
// The function howManyLines(g) which computes the number of lines on the cubic surface defined by the roots of a given polynomial of degree 6.
function howManyLines(g)
c := -1;
try F := Factorization(g);
part := Reverse( Sort([Degree(factor[1]) : factor in F ]) );
for j in partitionCounts do
if j[1] eq part then
c := j[2][1];
end if;
end for;
catch e c := -1;
end try;
return c;
end function;
//We determine the distribution of the lines-counts using lineCounts(p,N,M) for M polynomials.
function lineCounts(p,N,M)
counts := [0 : j in [-1..27]];
c := -1;
for i in [1..M] do
if (i mod 1000) eq 0 then
print i;
end if;
g := randomPolynomial(p,N);
c := howManyLines(g);
counts[c+2] := counts[c+2] + 1;
while c eq -1 do
g := randomPolynomial(p,N);
c := howManyLines(g);
counts[c+2] := counts[c+2] + 1;
end while;
end for;
return counts;
end function;
```